If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8v^2+68v+84=0
a = 8; b = 68; c = +84;
Δ = b2-4ac
Δ = 682-4·8·84
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-44}{2*8}=\frac{-112}{16} =-7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+44}{2*8}=\frac{-24}{16} =-1+1/2 $
| -14w=-798 | | -8=-4+n/2 | | -73=-1+9x | | 120+25x30=x | | 3x5−2x+1=0 | | 6-(4-8x)=4x+3 | | 35-1.50x=5 | | 3+6m=5+7m | | 18-0.5x=9 | | 2x+11=5x+16 | | -6=-10+m—5 | | -97=-8x-1 | | -2p-10=-32 | | -2(5a-1)+6=-4(1+2a) | | –14w=–798 | | 13t^2-2t-7=0 | | 0.05(7-x)=0.1=0.56 | | 824=t+99 | | 7a+3-(a+1=) | | y+12=14 | | 100=8g+15 | | 5r+4(7-6r)=-26-r | | 5+2m)+2=2(m+2)+3 | | 32-v=182 | | X2-19x+88=0 | | -63=8(1-4x)+5(x+2) | | 9(v+4)=4v+46 | | X2+x+7=144 | | .15(n+50)=0.05(n-20)+13.5 | | 12(2w-3)=24w-3 | | m/28=18 | | 11=4(y+2)-7y |